Copied to
clipboard

G = C23:D10order 160 = 25·5

1st semidirect product of C23 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10:5D4, C23:1D10, C5:2C22wrC2, (C2xD4):3D5, (C2xC10):2D4, (C2xC4):2D10, (D4xC10):8C2, C2.25(D4xD5), (C2xC20):7C22, C10.49(C2xD4), (C23xD5):2C2, C22:2(C5:D4), C23.D5:10C2, D10:C4:14C2, (C2xC10).52C23, (C22xC10):3C22, (C2xDic5):2C22, C22.59(C22xD5), (C22xD5).28C22, (C2xC5:D4):4C2, C2.13(C2xC5:D4), SmallGroup(160,158)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C23:D10
C1C5C10C2xC10C22xD5C23xD5 — C23:D10
C5C2xC10 — C23:D10
C1C22C2xD4

Generators and relations for C23:D10
 G = < a,b,c,d,e | a2=b2=c2=d10=e2=1, ab=ba, dad-1=ac=ca, eae=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 496 in 130 conjugacy classes, 37 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, D5, C10, C10, C10, C22:C4, C2xD4, C2xD4, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xC10, C22wrC2, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xD5, C22xC10, D10:C4, C23.D5, C2xC5:D4, D4xC10, C23xD5, C23:D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C22wrC2, C5:D4, C22xD5, D4xD5, C2xC5:D4, C23:D10

Smallest permutation representation of C23:D10
On 40 points
Generators in S40
(1 34)(2 12)(3 36)(4 14)(5 38)(6 16)(7 40)(8 18)(9 32)(10 20)(11 28)(13 30)(15 22)(17 24)(19 26)(21 37)(23 39)(25 31)(27 33)(29 35)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 16)(12 17)(13 18)(14 19)(15 20)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 31)(19 32)(20 33)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 30)(9 29)(10 28)(11 38)(12 37)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 40)(20 39)

G:=sub<Sym(40)| (1,34)(2,12)(3,36)(4,14)(5,38)(6,16)(7,40)(8,18)(9,32)(10,20)(11,28)(13,30)(15,22)(17,24)(19,26)(21,37)(23,39)(25,31)(27,33)(29,35), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,31)(19,32)(20,33), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,30)(9,29)(10,28)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,40)(20,39)>;

G:=Group( (1,34)(2,12)(3,36)(4,14)(5,38)(6,16)(7,40)(8,18)(9,32)(10,20)(11,28)(13,30)(15,22)(17,24)(19,26)(21,37)(23,39)(25,31)(27,33)(29,35), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,16)(12,17)(13,18)(14,19)(15,20)(31,36)(32,37)(33,38)(34,39)(35,40), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,31)(19,32)(20,33), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,30)(9,29)(10,28)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,40)(20,39) );

G=PermutationGroup([[(1,34),(2,12),(3,36),(4,14),(5,38),(6,16),(7,40),(8,18),(9,32),(10,20),(11,28),(13,30),(15,22),(17,24),(19,26),(21,37),(23,39),(25,31),(27,33),(29,35)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,16),(12,17),(13,18),(14,19),(15,20),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,31),(19,32),(20,33)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,30),(9,29),(10,28),(11,38),(12,37),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,40),(20,39)]])

C23:D10 is a maximal subgroup of
C5:3C2wrC4  C23.3D20  C23:D20  2+ 1+4:2D5  C42:12D10  D20:23D4  C42:16D10  C42:17D10  D5xC22wrC2  C24:3D10  C24:4D10  C24.33D10  C24.34D10  C24:5D10  C10.372+ 1+4  C4:C4:21D10  C10.382+ 1+4  D20:19D4  C10.402+ 1+4  D20:20D4  C10.422+ 1+4  C10.462+ 1+4  C10.482+ 1+4  C10.1202+ 1+4  C4:C4:28D10  C10.612+ 1+4  C10.1222+ 1+4  C10.622+ 1+4  C10.682+ 1+4  C42:20D10  C42:21D10  C42:22D10  C42:26D10  D20:11D4  C42:28D10  D4xC5:D4  C24:8D10  (C2xC20):15D4  C10.1452+ 1+4  C10.1462+ 1+4  D30:4D4  (C2xC30):D4  D30:19D4  D30:8D4  D30:17D4  D10:S4
C23:D10 is a maximal quotient of
C24.46D10  C23:Dic10  C24.48D10  C24.12D10  C24.14D10  C23:2D20  (C2xC4):Dic10  D10:5(C4:C4)  (C2xC4):3D20  C24:2D10  D20:16D4  D20:17D4  Dic10:17D4  D20.36D4  D20.37D4  Dic10.37D4  C22:C4:D10  C42:5D10  D20.14D4  D20:5D4  D20.15D4  D20:D4  Dic10:D4  D10:6SD16  D10:8SD16  D20:7D4  Dic10.16D4  D10:5Q16  D20.17D4  D20:18D4  D20.38D4  D20.39D4  D20.40D4  C24.18D10  C24.21D10  D30:4D4  (C2xC30):D4  D30:19D4  D30:8D4  D30:17D4

34 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C5A5B10A···10F10G···10N20A20B20C20D
order122222222224445510···1010···1020202020
size11112241010101042020222···24···44444

34 irreducible representations

dim1111112222224
type++++++++++++
imageC1C2C2C2C2C2D4D4D5D10D10C5:D4D4xD5
kernelC23:D10D10:C4C23.D5C2xC5:D4D4xC10C23xD5D10C2xC10C2xD4C2xC4C23C22C2
# reps1212114222484

Matrix representation of C23:D10 in GL4(F41) generated by

17600
342400
0001
0010
,
40000
04000
0010
0001
,
1000
0100
00400
00040
,
0600
34700
00400
0001
,
34600
33700
0010
00040
G:=sub<GL(4,GF(41))| [17,34,0,0,6,24,0,0,0,0,0,1,0,0,1,0],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[0,34,0,0,6,7,0,0,0,0,40,0,0,0,0,1],[34,33,0,0,6,7,0,0,0,0,1,0,0,0,0,40] >;

C23:D10 in GAP, Magma, Sage, TeX

C_2^3\rtimes D_{10}
% in TeX

G:=Group("C2^3:D10");
// GroupNames label

G:=SmallGroup(160,158);
// by ID

G=gap.SmallGroup(160,158);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,218,188,4613]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^10=e^2=1,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<